Secondary Characteristic Classes of Lie Algebra Extensions

نویسنده

  • Stefan Wagner
چکیده

We introduce a notion of secondary characteristic classes of Lie algebra extensions. As a spin-off of our construction we obtain a new proof of Lecomte’s generalization of the Chern–Weil homomorphism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Groupoid extensions, principal 2-group bundles and characteristic classes

We give an explicit description of a 1-1 correspondence between Morita equivalence classes of, on the one hand, principal 2-group [G → Aut(G)]bundles over Lie groupoids (i.e. [G → Aut(G)]-bundles over differentiable stacks) and, on the other hand, centralG-extensions of Lie groupoids (i.e. Ggerbes over differentiable stacks). We also introduce universal characteristic classes for 2-group bundle...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Novikov Structures on Solvable Lie Algebras

We study Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov structure must be solvable. Conversely we present an example of a nilpotent 2-step solvable Lie algebra without any Novikov structure. We construct Novikov structures on certain Lie algebras via classical r-matrices and via extensions. In the latter case we lift No...

متن کامل

Classical R-matrices and Novikov Algebras

We study the existence problem for Novikov algebra structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov algebra is necessarily solvable. Conversely we present a 2-step solvable Lie algebra without any Novikov structure. We use extensions and classical r-matrices to construct Novikov structures on certain classes of solvable Lie algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017